Eigenvalue of (p,q)-Laplace system along the powers of mean curvature flow

نویسندگان

چکیده

In this paper we derive the evolution equation of first nonzero eigenvalue (p,q)-Laplace system under unnormalized Hk-flow. By imposing some conditions on mean curvature prove monotonicity

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow by Powers of the Gauss Curvature

We prove that convex hypersurfaces in Rn+1 contracting under the flow by any power α > 1 n+2 of the Gauss curvature converge (after rescaling to fixed volume) to a limit which is a smooth, uniformly convex self-similar contracting solution of the flow. Under additional central symmetry of the initial body we prove that the limit is the round sphere.

متن کامل

Mean Curvature Blowup in Mean Curvature Flow

In this note we establish that finite-time singularities of the mean curvature flow of compact Riemannian submanifolds M t →֒ (N, h) are characterised by the blow up of the mean curvature.

متن کامل

Mean curvature flow

Mean curvature flow is the negative gradient flow of volume, so any hypersurface flows through hypersurfaces in the direction of steepest descent for volume and eventually becomes extinct in finite time. Before it becomes extinct, topological changes can occur as it goes through singularities. If the hypersurface is in general or generic position, then we explain what singularities can occur un...

متن کامل

Riemannian Mean Curvature Flow

In this paper we explicitly derive a level set formulation for mean curvature flow in a Riemannian metric space. This extends the traditional geodesic active contour framework which is based on conformal flows. Curve evolution for image segmentation can be posed as a Riemannian evolution process where the induced metric is related to the local structure tensor. Examples on both synthetic and re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2022

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2218269s